很考验思维的一道题
此题为 North American Invitational Programming Contest (NAIPC) 2014 F 题,题目链接。
题意 #
给出一张图,每个顶点有的金子,你要从顶点 1 沿最短路到顶点 2,再沿任意路径返回。对于路径上的每个顶点,你可以选择抢劫他们的金子,但如果你抢了金子,返回的时候就不能经过这个顶点,问最多能抢多少金子。
题解 #
由于 n 很小,可以考虑暴力枚举每一条最短路。我们不妨换个角度思考:去的时候先把路径上的金子都抢了,回来的时候再把经过的顶点的金子还回去。这样回去的路径就可以看作是最短路:如果经过在来的路径上的点花费就是没,否则花费就是 0.
代码 #
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n, m;
cin >> n >> m;
vector<int> a(n);
for (int i = 2; i < n; i++)
cin >> a[i];
vector<vector<int>> g(n);
for (int i = 0; i < m; i++) {
int u, v;
cin >> u >> v;
u--, v--;
g[u].push_back(v);
g[v].push_back(u);
}
queue<int> q;
q.push(0);
vector<int> dep(n, -1);
dep[0] = 0;
while (!q.empty()) {
auto u = q.front();
q.pop();
for (auto v : g[u]) {
if (dep[v] == -1) {
dep[v] = dep[u] + 1;
q.push(v);
}
}
}
int ans = 0;
vector<bool> vis(n);
auto dijkstra = [&]() {
vector<int> dis(n, -1);
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<>> q;
dis[0] = 0;
q.emplace(0, 0);
while (!q.empty()) {
auto [d, u] = q.top();
q.pop();
if (d != dis[u]) continue;
for (auto v : g[u]) {
int nd = d + (vis[v] ? a[v] : 0);
if (dis[v] == -1 || nd < dis[v]) {
dis[v] = nd;
q.emplace(nd, v);
}
}
}
int sum = 0;
for (int i = 0; i < n; i++) {
if (vis[i]) sum += a[i];
}
ans = max(ans, sum - dis[1]);
};
auto dfs = [&](auto &me, int u) -> void {
vis[u] = true;
for (auto v : g[u]) {
if (v == 1) dijkstra();
else if (dep[v] == dep[u] + 1 && dep[v] < dep[1])
me(me, v);
}
vis[u] = false;
};
dfs(dfs, 0);
cout << ans << '\n';
return 0;
}