Gym 102428F - Fabricating Sculptures 题解

优雅的解法。

题解 #

首先我们可以忽略第一层方块。设dps,bdp_{s,b}表示把bb个方块放在ss堆上放法的数量。(有些堆可以是空的)

现在我们考虑一下转移方程,有三种情况:

  • 第一层是满的
  • 最左边的堆是空的
  • 在右边的堆是空的

第一种情况我们可以忽略掉第一层,放置的方法就是dps,bsdp_{s,b-s}. 第二,三种情况我们可以忽略掉空的那一堆,所以有2dps1,b2\cdot dp_{s-1,b}种放法,但两种情况有重叠,因为有可能左右两堆都是空的,所以要减掉dps2,bdp_{s-2,b}。综上所述,转移方程就是:

dps,b=dps,bs+2dps1,bdps2,bdp_{s,b}=dp_{s,b-s}+2\cdot dp_{s-1,b}-dp_{s-2,b}

这个可以用记忆化搜索来求。

Code #

#include <bits/stdc++.h>
 
#define forn(i, n) for (int i = 0; i < int(n); ++i)
#define for1(i, n) for (int i = 1; i <= int(n); ++i)
#define fore(i, l, r) for (int i = int(l); i <= int(r); ++i)
#define ford(i, n) for (int i = int(n)-1; i >= 0; --i)
#define pb push_back
#define eb emplace_back
#define ms(a, x) memset(a, x, sizeof(a))
#define F first
#define S second
#define endl '\n'
#define all(x) (x).begin(),(x).end()
 
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
const int INF = 0x3f3f3f3f;
mt19937 gen(chrono::high_resolution_clock::now().time_since_epoch().count());
template<typename... Args>
void write(Args... args) { ((cout << args << " "), ...); cout<<endl;}
 
const int N=5e3+5;
ll dp[N][N];
const int mod=1e9+7;
ll solve(int s,int b){
    if(b==0) return 1;
    if(s<=0) return 0;
    ll& ret=dp[s][b];
    if( ret) return ret;
    ret=0;
    if(s<=b) ret=solve(s,b-s);
    ret=(ret+solve(s-1,b)*2-solve(s-2,b)+mod)%mod;
    return ret;
}
int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int s,b;
    cin>>s>>b;
    cout<<solve(s,b-s);
    return 0;
}