Klee’s Algorithm #
int length_union(const vector<pair<int, int>> &a) {
int n = a.size();
vector<pair<int, bool>> x(n*2);
for (int i = 0; i < n; i++) {
x[i*2] = {a[i].first, false};
x[i*2+1] = {a[i].second, true};
}
sort(x.begin(), x.end());
int result = 0;
int c = 0;
for (int i = 0; i < n * 2; i++) {
if (i > 0 && x[i].first > x[i-1].first && c > 0)
result += x[i].first - x[i-1].first;
if (x[i].second) c--;
else c++;
}
return result;
}
One algorithm that I learnt from other’s code #
int length_union(const vector<pair<int, int>> &a) {
int n = a.size();
sort(a.begin(), a.end());
int result = 0;
int rr = 0;
for(pii it:a){
int l=it.fist,r=it.second;
result+=max(0,r-max(rr,l));
rr=max(rr,r);
}
return result;
}